

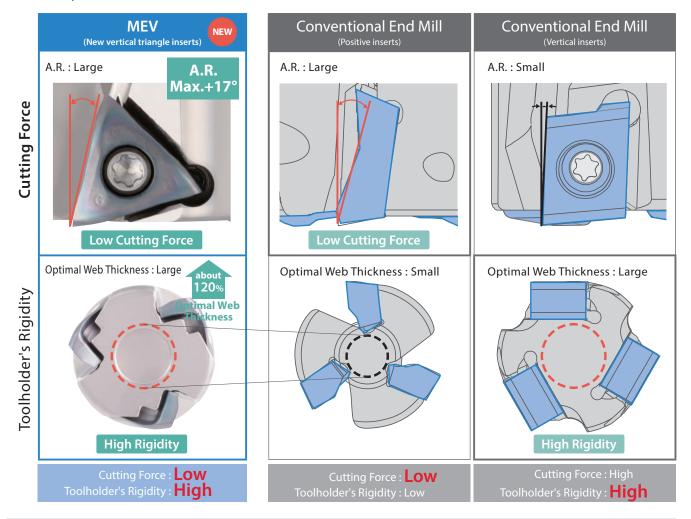
MEV

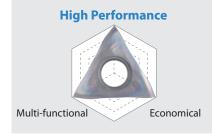
High Performance Milling

New Generation of High Performance, Economical, Multi-functional Milling Cutters

Newly Developed Triangle Inserts Provide Numerous Solutions to Machining Challenges

MEV


Newly Developed Triangular Inserts for Provide Low Cutting Forces and Increased Rigidity High Performance, Economical, and Multi-functional Milling Solutions



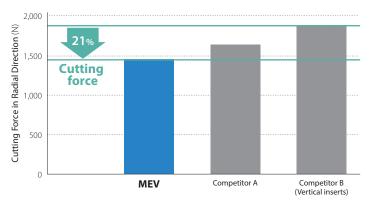
High Performance: Low Cutting Force and High Rigidity

Newly developed vertical triangle inserts with 3 cutting edges Achieve stable machining with reduced chattering

MEV vs Competitor

The MEV's large A.R. produces lower cutting forces and the vertical triangle inserts provide a higher rigidity.

The great performance of the multi-purpose MEV triangle inserts combines both advantages of conventional positive and negative type inserts.

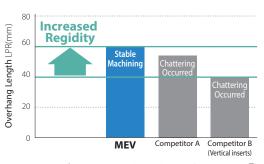


Low cutting force and tough cutting edge

High rigidity web thickness

Keeping A.R. max. at $+17^{\circ}$, provides lower cutting force than the positive insert types of competitors

Cutting Force Comparison (Internal evaluation)


 $Cutting\ conditions: Vc = 200\ m/min, ap \times ae = 3 \times 18\ mm, fz = 0.10\ mm/t, \\ \varnothing 20\ (3\ inserts), Dry\ Workpiece: SCM440\ (House, SCM440\ Moreover, SCM44$

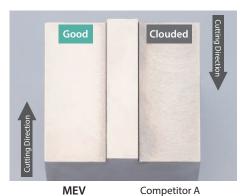
Low cutting force and large optimal web thickness provides excellent chattering resistance

Chattering Resistance Comparison (Internal evaluation)

Shouldering

Slotting

Good



Cutting conditions: Vc = 220 m/min, ap = 3 mm (Slotting), fz = 0.10 mm/t, $\emptyset 20$ (3 inserts), Dry Workpiece: SCM440 H

Provides excellent surface finish and superior cutting accuracy of the wall

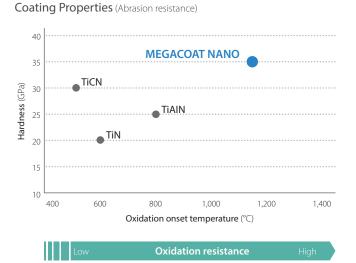
Surface Finish Comparison (Internal evaluation)

Cutting conditions : Vc = 180 m/min, ap \times ae=3 \times 40mm, fz = 0.1 mm/t, ø50 (5 inserts), Dry Workpiece : S50C

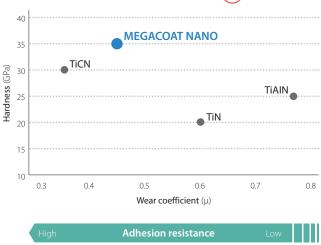
Cutting accuracy of wall example (Internal evaluation) A3µm 13µm MEV Competitor A Reference point Wall side -60 -40 -20 0 20 40 60 Cutting accuracy of the wall (µm)

Cutting conditions : Vc = 200 m/min, ap \times ae=3 \times 10mm (4 pass), fz = 0.15 mm/t, ϕ 50 (5 inserts), Dry Workpiece : S50C

*Accuracy of the wall surface varies depending on cutting conditions, machining environment, and insert combination.

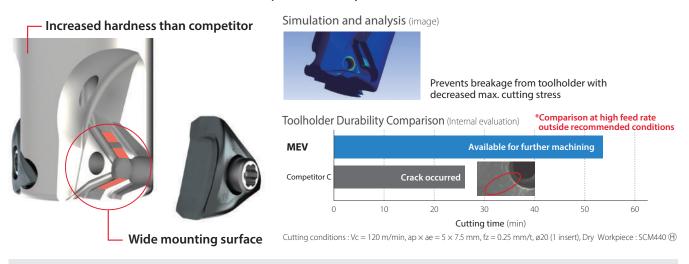

The Economical Choice: Lengthened Insert Life with 3 Usable Cutting Edges

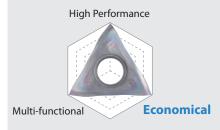
Insert


Unique triangle inserts with 3 cutting edges

PR15 series utilizes excellent MEGACOAT NANO coating technology with wear and adhesion resistance

Coating Properties (Adhesion resistance)

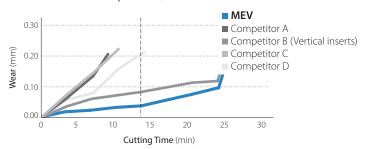



Achieve long tool life with the combination of a tough substrate and a special Nano coating layer

Stable Machining with Excellent Wear Resistance

Toolholder

Engineered with state-of-the-art simulation and analysis technology, the MEV is built to reduce cutting stress on the cutter body Increased hardness and wide contact surface for improved durability

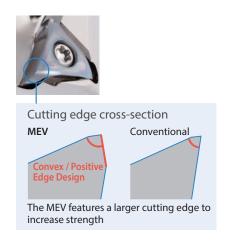


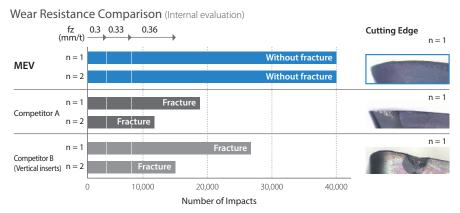
3 cutting edges combined with PR15 series MEGACOAT NANO coating technology maintains long tool life

Improved toolholder toughness and durability

Long Tool Life with Excellent Wear Resistance

Wear Resistance Comparison (Internal evaluation)




 $Cutting\ conditions: Vc = 180\ m/min,\ ap \times ae = 3 \times 10\ mm,\ fz = 0.1\ mm/t,\ \varnothing 20,\ Dry\ \ Workpiece: SKD11\ (30\sim35HS)$

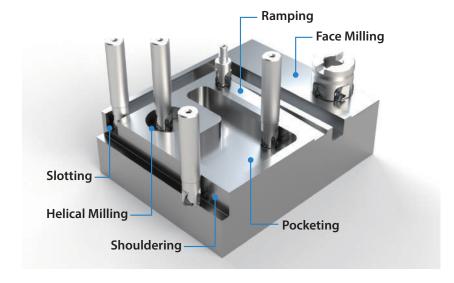
Cutting Edge (After machining 14 min) MEV Competitor A (Vertical inserts) (After machining 9.1 min) Competitor C Competitor D

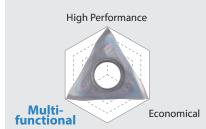
(After machining 10.5 min)

Improved Stability with Superior Fracture Resistance

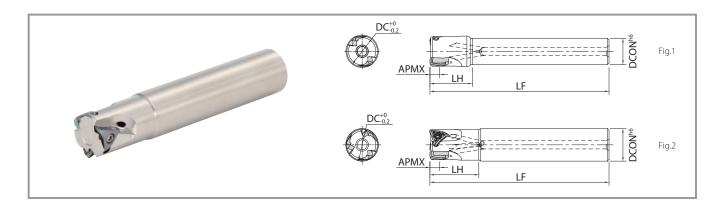
 $Cutting\ conditions: Vc = 120\ m/min, ap \times ae = 2 \times 10\ mm, fz = 0.3 - 0.36\ mm/t, \\ \emptyset 20\ (1\ insert), Dry\ Workpiece: SCM440\ \textcircled{+}\ (37\sim39HS)$

3


Multi-functional: The MEV can perform a wide variety of machining processes


Great performance in shouldering, slotting, and ramping applications (D.O.C. 6 mm or less)

Chip Example (Slotting)


Cutting conditions : Vc = 150 m/min, ap = 6 mm (Slotting) fz = 0.2 mm/t, \emptyset 20 (3 insert), Dry Workpice : SS400

Good chip evacuation with a unique insert chipbreaker design

Stable machining in applications like slotting and ramping where chip recutting issues are common

Toolholder Dimensions

Description			reintion	Stock	No. of		Dim	nensions (n	nm)		Rake	Angle	Coolant	Weight	Drawing	Max. Revolution
		Deze	прион	Stock	Inserts	DC	DCON	LF	LH	APMX	A.R.(MAX.)	R.R.	Hole	(kg)	Drawing	(min-1)
		MEV	20-S16-06-2T	•	2	20	16	110	26			-38°		0.2		32,000
			22-S20-06-3T	•		22	20	110	20			-37°]	0.2		29,000
	ight)		25-S20-06-3T	•	3	25	20	120	29			-3/		0.3		25,000
	Standard (Straight)		28-S25-06-3T	•		28		120	29	6	+17°	-36°	Yes	0.4	Fig.1	23,000
	dard		30-S25-06-4T	•	4	30	25	130	32			-30	163	0.5	rig.i	21,500
	Stano		32-S25-06-4T	•	4	32		130	32					0.5		20,000
			40-S32-06-5T	•	5	40	32	150	50			-35°		1.0		16,000
			50-S32-06-5T	•	3	50	32	120	40		+16°			0.9		13,000
		MEV	20-S20-06-2T	•	2	20	20	110	30			-38°		0.2		32,000
눝	lank		20-S20-06-3T	•	3	20	20	110	30					0.2		32,000
Straight Shank	Same Size Shank		25-S25-06-2T	•	2	25	25	120	32	6	+17°	-37°	Yes	0.4	Fig.2	25,000
aigh	ne Si;		25-S25-06-3T	•	3	23	23	120	32		т17	-57	163	0.4	119.2	23,000
155	San		32-S32-06-3T	•		32	32	130	40			-36°		0.7		20,000
			32-S32-06-4T	•	4	J2	32	130	10			30		0.7		20,000
		MEV	20-S18-06-150-2T	•		20	18	150	30			-38°		0.3	Fig.1	32,000
	Long Shank		20-S20-06-150-2T	•	2	20	20	150	40	6	+17°		Yes	0.5		32,000
	Long		25-S25-06-170-2T	•		25	25	170	50		117	-37°	163	0.6	Fig.2	25,000
			32-S32-06-200-2T	•		32	32	200	65			-35°		1.1		20,000
	<u> </u>	MEV	20-S18-06-150-3T	•		20	18	150	30			-38°		0.3	Fig.1	32,000
NEV	Long Shank (Fine pitch)		20-S20-06-150-3T	•	3	20	20	130	40	6	±17°	30	Yes	0.5		32,000
-	Long (Fine		25-S25-06-170-3T	•	ا	25	25	170	50		+17°	-37°	163	0.6	Fig.2	25,000
			32-S32-06-200-3T	•		32	32	200	65			-35°		1.1		20,000

Caution with Max. Revolution

: Standard Stock

Spare Parts and Applicable Inserts

·		<u> </u>		Pa	rts		Applicab	le Inserts
D	Description		Clamp Screw	Wrench	Anti-Seize Compound	Arbor Bolt		
U							General Purpose	Low Cutting Force
End Mills	MEV	06T				-		
	MEV	032R-06-4T-M				HH8X25		
		040R-06-5T-M				ППОЛ2Э		
Face Mills		050R-06-5T-M				HH10X30		
race Mills		063R-06-6T-M				HH10X30		
		080R-06-7T(-M)	SB-3076TRP	DTPM-10	P-37	HH12X35	TOMT06GM	TOMT06SM
		100R-06-9T(-M)				-		
	MEV	20-M10-06-2T	Recomme	nded torque for iı 2.0 N·m	nsert screw	-		
Modular Heads		20-M10-06-3T		2.0 N III		-		
iviouulai neaus		25-M12-06-3T				_		
		32-M16-06-4T				-		

Set the number of revolutions per minute within the recommended cutting speed specified by the workpiece on page P9.

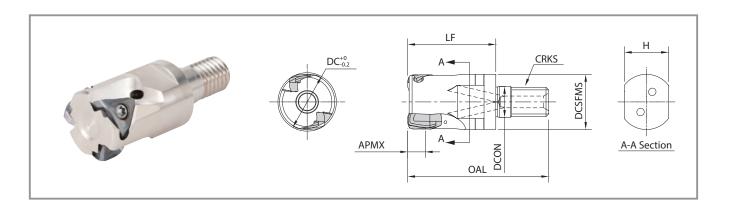
Do not use the end mill or cutter at the maximum revolution or higher since the centrifugal force may cause inserts and parts to scatter even under no load. Coat anti-seize compound thinly on portion of taper and thread prior to installation.

Toolholder Dimensions

					No of				[Dimensio	ns (mm)				Rake	Angle	Caalana		Mainha	May Davalutian
	Description Sto		Stock	No. of Inserts	DC	DCSFMS	DCB	DCCB ₁	DCCB ₂	LF	CBDP	KDP	KWW	APMX	A.R. (MAX.)	R.R.	Hole	Drawing	Weight (kg)	Max. Revolution (min-1)	
	J	MEV	032R-06-4T-M	•	4	32	30	16	13.5	9	35	19	5.6	8.4		+17°				0.1	20,000
	: sbec		040R-06-5T-M	•	5	40	38	10	15		40	19	5.0	8.4		+17				0.2	16,000
	Metric		050R-06-5T-M	•	5	50	0 48 22 18 11	40	21	6.3	10.4	*6	+16°	-35°	Yes	Fig.1	0.4	13,000			
pitch	Dia. N	NEW	063R-06-6T-M	•	6	63	48	8 22 18 11	11	40	21	6.3	10.4		+16°	-33	163		0.6	10,000	
rse p	Bore [NEW	080R-06-7T-M	•	7	80	60	27	20	13	50	24	7	12.4		+15°				1.1	7,900
Coarse	8	NEW	100R-06-9T-M	•	9	100	70	32	46	-	50	30	8	14.4		+13			Fig.2	1.4	6,300
NE	Dia. spec	MEV	080R-06-7T	•	7	80	60	25.4	20	13	50	27	6	9.5	*6	. 15°	250	Yes	Fig.1	1.1	7,900
NE	Bore Inch	1	100R-06-9T	•	9	100	70	31.75	.75 46	-	63	34	8	12.7	"ο -	+15° -3	-35°	162	Fig.2	1.4	6,300

Caution with Max. Revolution

●: Standard Stock


Set the number of revolutions per minute within the recommended cutting speed specified by the workpiece on page P9.

Do not use the end mill or cutter at the maximum revolution or higher since the centrifugal force may cause inserts and parts to scatter even under no load.

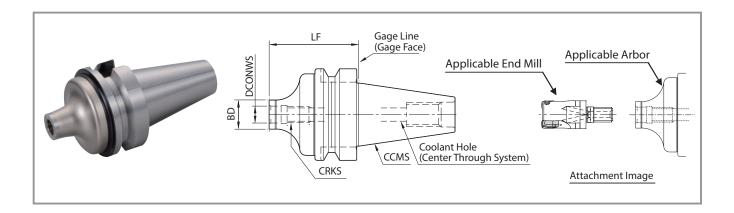
Coat anti-seize compound thinly on portion of taper and thread prior to installation.

*For cutting depth of shouldering with cutter diameter DCø63 or more (Width of cut ae ≥ DC/4) and slotting, refer to the recommended chipbreaker range on P8.

MEV (Modular Heads)

Toolholder Dimensions

			No. of		Dimensions (mm)							Rake	Rake Angle		Max. Revolution
	Description Stock Inserts		DC	DCSFMS	DCON	OAL	LF	CRKS	Н	APMX	A.R. (MAX.)	R.R.	- Coolant Hole	(min ⁻¹)	
MEV	20-M10-06-2T	•	2	20	18.7	10.5	48	30	M10×P1.5	15			-38°		32,000
	20-M10-06-3T	•	2	20	10.7	10.5	40	30	WITUXP1.5	15	_	+17°	-36	Yes	32,000
	25-M12-06-3T	•	٥	25	23	12.5	56	35	M12×P1.75	19	6	+1/	-37°	162	25,000
	32-M16-06-4T	•	4	32	30	17	62	40	M16×P2.0	24			-35°		20,000


Caution with Max. Revolution

: Standard Stock

Set the number of revolutions per minute within the recommended cutting speed specified by the workpiece on page P9.

Do not use the end mill or cutter at the maximum revolution or higher since the centrifugal force may cause inserts and parts to scatter even under no load. Coat anti-seize compound thinly on portion of taper and thread prior to installation.

BT Arbor for Exchangeable Head / Double-face Clamping Spindle

Dimensions

	Description Stock			Dimensio	ons (mm)		6 1 (11)	Arbor (Double-face clamping spindle)	A 15 11 5 1469
Des	cription	Stock	LF	BD	DCONWS	CRKS	Coolant Hole	CCMS	Applicable End Mill
BT30K-	M10-45	•	45	18.7	10.5	M10×P1.5	Yes	BT30	MEV20-M10··
	M12-45	•	45	23	12.5	M12×P1.75	res	БТЗО	MEV25-M12∙·
BT40K-	M10-60	•	60	18.7	10.5	M10×P1.5			MEV20-M10
	M12-55	•	55	23	12.5	M12×P1.75	Yes	BT40	MEV25-M12··
	M16-65	•	65	30	17	M16×P2.0			MEV32-M16

Applicable End Mill

Cutting Dia.

DC

20

25

20

25

32

Dimensions

30

35

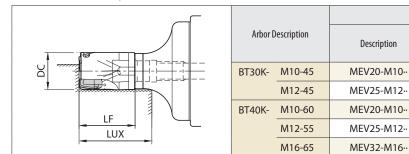
35

ullet : Standard Stock

Actual End Mill Depth (mm)

LUX

36.8

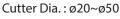

42.8

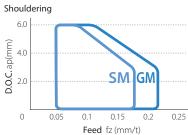
38.7

44.6

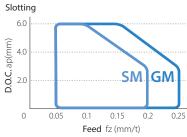
51.2

Actual End Mill Depth

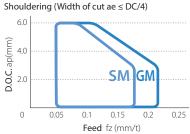


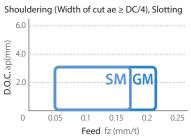

Case study Not clamped firmly	
Parts for machinary SUS420	Plate SS400
Vc = 180 m/min ap × ae = 1 × ~50 mm fz = 0.1 mm/t Dry MEV50-S32-06-5T (5 inserts) TOMT060508ER-GM PR1535	Vc = 180 m/min ap = 3 mm fz = 0.14 mm/t Dry MEV22-520-06-3T (ø22-3 inserts) TOMT060508ER-GM PR1525
Cutting time Machining Efficiency	Number of parts produced Tool life
MEV Vf=575 mm/min x1.6	MEV 160 pcs/corner x2.4
Competitor E Vf=350 mm/min	Competitor F 65 pcs/corner
Quiet machining even when cutting speed increased.	The MEV achieved 2.4 times longer tool life than competitor F.
The MEV shows 1.6 times machining efficiency and good bottom surface finish. (User evaluation)	Quieter machining with excellent surface finish. (User evaluation)

	Classification of usage	Р	Carbon	Steel • All	oy Steel		☆	*		
	Classification of usage	r	Mold St	eel			☆	*		
			Austeni	tic Stainle	ss Steel		*	☆		
		М	Martens	itic Stainl	ess Steel		☆			*
	★: Roughing / 1st Choice		Precipita	tion Harde	ened Stain	ess Steel	*			
	☆: Roughing / 2nd Choice		Gray Ca	st Iron				☆	*	
	: Finishing / 1st Choice	K	-	Cast Iron				☆	*	
	: Finishing / 2nd Choice	N	Non-fer	rous Mate	rial					
	(In Case Hardness is Under 45HRC)	S	Heat Resistant Alloy Titanium Alloy				☆			*
	,	3					*		☆	
		Н	Hard Ma	aterials						
			Dimensions (mm)					MEGACOAT NANO		
Insert	Description	IC	S	D1	BS	RE	PR1535	PR1525	PR1510	CA6535
	TOMT 060504ER-GM	7.2	5.7	3.4	1.9	0.4	•	•	•	•
General Purpose	060508ER-GM	7.2	3.7	3.4	1.5	0.8	•	•	•	•
RE BS S	TOMT 060508ER-SM	7.2	5.7	3.4	1.5	0.8	•	•		•


Recommended Chipbreaker Range

GM type for General Purpose: Edge Shape Optimized for Various Machining Applications SM type with Low Cutting Force Design: Sharp Cutting and Large Rake Angle


Cutting conditions : Vc = 150 m/min, ae = DC/2 mm, Workpiece : S50C


Cutting conditions: Vc = 150 m/min, ae = DC mm, Workpiece: S50C

●: Standard Stock

Cutter Dia.: ø63~ø100

Cutting conditions: Vc = 150 m/min, ae = DC/4 mm, Workpiece: S50C

Cutting conditions: Vc = 150 m/min, ae = DC mm, Workpiece: S50C

ker			Recommended	Insert Grade (Cutting Sp	peed Vc : m/min)
Chipbreaker	Workpiece	Feed (fz : mm/t)	MEGACO	AT NANO	CVD Coated Carbide
Chip			PR1535	PR1525	CA6535
	Carbon Steel	0.08 - 0.15 - 0.25	☆ 120 – 180 – 250	★ 120 – 180 – 250	_
	Alloy Steel	0.08 - 0.15 - 0.2	100 − 160 − 220	★ 100 – 160 – 220	_
	Mold Steel	0.08 - 0.12 - 0.2	80 − 140 − 180	★ 80 – 140 – 180	_
	Austenitic Stainless Steel	0.08 - 0.12 - 0.15	100 − 160 − 200	100 − 160 − 200	_
GM	Martensitic Stainless Steel	0.08 - 0.12 - 0.2	150 – 200 – 250	_	★ 180 – 24 0 – 300
GIVI	Precipitation Hardened Stainless Steel	0.08 - 0.12 - 0.2	★ 90 – 120 – 150	_	_
	Gray Cast Iron	0.08 - 0.18 - 0.25	_	120 − 180 − 250	_
	Nodular Cast Iron	0.08 - 0.15 - 0.2	_	100 − 150 − 200	_
	Ni-base Heat-Resistant Alloy	0.08 - 0.12 - 0.15	20 − 30 − 50	_	★ 20 – 30 – 50
	Titanium Alloy	0.08 - 0.15 - 0.2	40 − 60 − 80	_	_
	Carbon Steel	0.08 - 0.15 - 0.2	120 – 180 – 250	★ 120 – 180 – 250	_
	Alloy Steel	0.08 - 0.12 - 0.18	100 − 160 − 220	★ 100 – 160 – 220	_
	Mold Steel	0.08 – 0.1 – 0.15	80 − 140 − 180	★ 80 – 140 – 180	_
SM	Austenitic Stainless Steel	0.08 – 0.1 – 0.15	★ 100 – 160 – 200	100 − 160 − 200	_
3141	Martensitic Stainless Steel	0.08 – 0.1 – 0.15	150 − 200 − 250	_	★ 180 – 240 – 300
	Precipitation Hardened Stainless Steel	0.08 – 0.1 – 0.15	90 − 120 − 150	_	_
	Ni-base Heat-Resistant Alloy	0.08 – 0.1 – 0.12	20 − 30 − 50	_	* 20 – 30 – 50
	Titanium Alloy	0.08 - 0.12 - 0.15	★ 40 − 60 − 80	_	_

The number in **bold font** is recommended starting conditions. Adjust the cutting speed and the feed rate within the above conditions according to the actual machining situation. Set the cutting speed and feed rate for wet machining to 70% in the table above.

For high-speed machining, set the feed rate in the table above to 70% (When the cutting speed increases more than the center value of the recommended condition).

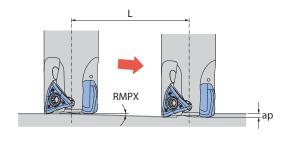
Cutting with coolant is recommended for Precipitation Hardening Stainless Steel, Ni-base Heat Resistant Alloy and Titanium Alloy.

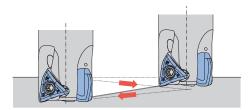
Cutting with coolant is recommended for finishing.

Regularly changing the clamp screw is recommended. This is because the clamp screw may be damaged by long-term use or machining under high cutting conditions as shown in the table above.

Ramping Reference Data

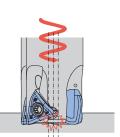
Description	Cutter Dia. DC (mm)	20	22	25	28	30	32	40	50	63~
MEN	Max. Ramping Angle RMPX	1.00°	0.80°	0.65°	0.60°	0.55°	0.50°	0.40°	0.30°	Not
MEV06	tan RMPX	0.017	0.014	0.011	0.010	0.010	0.009	0.007	0.005	recommended

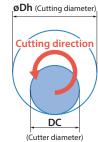

• Make ramping angle smaller if chips are too long.


Ramping Tips

- \bullet Ramping angle should be under α max (maximum ramping angle) in the above cutting conditions.
- Reduce recommended feed rate in cutting conditions less than 70%.

• For two-way ramping, the ramping angle should be half of RMPX.

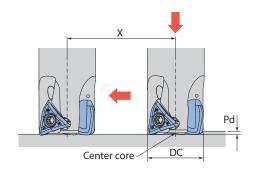



Helical Milling Tips

For helical milling, use between min. drilling dia. and max. drilling dia.

l	Jni	it:	m	m

Description	Min. Cutting Dia.	Max. Cutting Dia.
MEV06	2×DC-5	2×DC-2

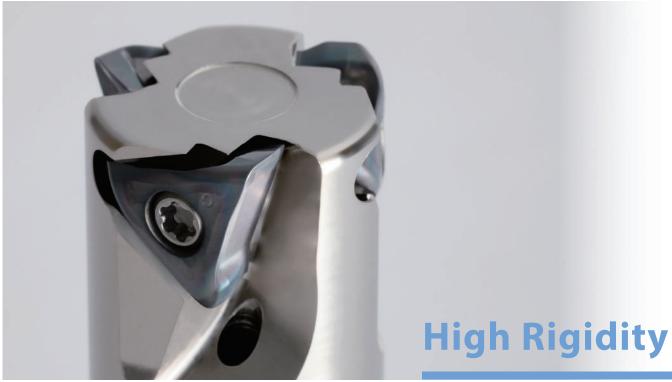

For helical milling, use between min. drilling dia. and max. drilling dia.

Keep machine depth (h) per rotation less than max. ap (S) in the cutter dimensions chart.

Use caution to eliminate incidences caused by producing long chips.

Cutter dia. $\emptyset 63$ and above are not recommended for helical milling.

Drilling Tips



		Unit : mm
Description	Max. Drilling Depth Pd	Min. Cutting Length X for Flat Bottom Surface
MEV06	0.25	DC-3

It is recommended to reduce feed by 25% of recommendation until the center core is removed when traversing after drilling.

Axial feed rate recommendation per revolution is f < 0.1 mm/rev.

